警惕!日本首相访美,释放多重危险信号******
中新网北京1月13日电(记者 甘甜) 当地时间1月13日,日本首相岸田文雄开启任上首次访美行,将与美国总统拜登在白宫会晤,以求进一步深化日美同盟关系。
但会谈还未开始,日媒却惦记上中国,字里行间不断鼓噪“抗衡中国”,谋求扩军备武。其背后所释放的“危险信号”,值得警惕。
资料图:日本首相岸田文雄。岸田访美,旨在“抗衡中国”?
岸田文雄从9日起开始欧美五国访问。美国,无疑是最为重要的一站。
连日来,日媒频频“放风”,称拜登回应日方请求、决定与岸田举行会谈,是因为“与中国的竞争成为最优先课题”。
日美外长、防长也于11日在华盛顿开会预热。日本共同社称,日美高级官员同意中国对“印太地区构成最大的战略挑战”,宣称要加强威慑,将两国安全条约的范围扩大到太空。
在日美首脑会谈中,两国还可能聚焦哪些议题?
据多家日媒消息,拜登与岸田将讨论俄乌局势、气候变化以及经济问题。岸田还将介绍在新版《国家安全保障战略》中提出的彻底强化防卫力和大幅增加防卫费。
消息人士透露,双方拟就加强核能发电和液化天然气(LNG)等能源领域合作达成共识;为“抗衡中国”,在包括半导体、人工智能(AI)、量子等尖端技术在内的经济安保领域扩大合作。
会谈后,双方预计将发表以安全保障为中心的联合声明,强调推动“自由开放的印太地区”的重要性,并再次确认《日美安全保障条约》第五条适用于所谓的“尖阁诸岛”(即中国钓鱼岛及其附属岛屿——记者注)。
中国社会科学院日本研究所研究员吕耀东认为,日本将借首相岸田此访进一步渲染“中国威胁”。从炒作南海问题,到宣称乌克兰危机可能会在东亚发生,如何应对这些所谓的“地区威胁论”,或将是此次会谈的主要内容。
资料图:停泊在日本横须贺美军基地的美国“里根号”核动力航母。日本想要“成为矛的一部分”
近段时间以来,日本野心外露,不满足于过去自卫队作“盾”、美军作“矛”的分工,也想“成为矛的一部分”。
2022年底,日本政府正式通过三份重磅安保政策文件。其中,新版《国家安全保障战略》宣称,日本应拥有“反击能力”,即“对敌基地攻击能力”。
日本政府2022年底还通过了2023财年政府预算草案,防卫预算达68219亿日元。其中,购买美制“战斧”巡航导弹预算为2113亿日元,获取远程攻击性导弹及相关预算高达1.4万亿日元。
吕耀东表示,值得注意的是,继美国发布“国家安全战略”后,日本也敲定了三份安保政策文件。也就是说,“过去日本的安全由美国来保护,而现在日本也要保护其盟国美国,因此其自称需要攻击性武器。”
外交学院国际关系研究所教授周永生还指出,“日本拥有‘反击能力’后,等于过去所说的‘专守防卫’政策被抛弃,和平宪法也被架空,出现了和战后自我约束的军事战略完全不同的、没有任何约束的军事战略。”
日本在军事“松绑”的路上越走越远,引发多方担忧和反对。
从东京首相官邸门前到广岛市内,日本民众发起抗议行动,高呼“不准增加军费” “反对大增军备和大增税”,抨击三份安保政策文件是违反宪法的“暴行”。
还有日本民众直言,“日本政府增加军费投入,这肯定威胁到我们的生存。这是绝对不应该做的政治行为。”
近日,韩国外交部负责人重申政府既定立场,即日本的国防国安政策要“朝着有利于地区和平稳定、坚持和平宪法精神的方向,公开透明地运行”。
中国外交部发言人汪文斌日前也强调,中方再次敦促日方恪守中日四个政治文件各项原则,切实将“互为合作伙伴、互不构成威胁”这一政治共识体现到政策上,落实到行动中,尊重亚洲邻国的安全关切,在军事安全领域谨言慎行。
1月11日,华盛顿,日本防卫大臣滨田靖一(左)与美国国务卿布林肯(右)握手。岸田为何此时对美“投怀送抱”?
就在岸田政府向美国“投怀送抱”之际,其国内执政却危机四伏。
2022年底,日本内阁陷入“辞职多米诺”,多名成员因政治资金使用等问题相继辞职。岸田本人也被曝政治资金收支报告中有近百张“空白发票”,引发争议。自民党一些要扳倒岸田势力的反对派,还在利用他提出的“通过增税支撑防卫费”问题施压。
丑闻不断,岸田内阁支持率持续走低。自1月7日起为期3天的舆论调查结果显示,岸田内阁的支持率仅为33%。另一项日本全国最新舆论调查则显示,46%的受访者认为岸田应在2023年上半年辞职。
在此情况下岸田为何要外访,就不难判断了,周永生指出,“过去一旦内政出现问题、支持率下降,安倍就会借用外交手段,岸田也学会了这招,想寻求美国支持,减少内部压力,同时通过此次访问取得外交成果,挽回低迷的支持率。”
但如今的日本物价高涨,经济数据表现疲软,民众叫苦不迭,岸田政府若不顾民众声音,执意制造分裂对抗,其谋算或许终难如愿。(完)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) 中国网客户端 国家重点新闻网站,9语种权威发布 |